6,044 research outputs found

    Exploiting hidden block sparsity: Interdependent matching pursuit for cyclic feature detection

    Get PDF
    In this paper, we propose a novel Compressive Sensing (CS)-enhanced spectrum sensing approach for Cognitive Radio (CR) systems. The new framework enables cyclic feature detection with a significantly reduced sampling rate. We associate the new framework with a novel model-based greedy reconstruction algorithm: interdependent matching pursuit (IMP). For IMP, the hidden block sparsity owing to the symmetry present in the cyclic spectrum is exploited which effectively reduces the degree of freedom of problem. Compared with conventional CS with independent support selection, a remarkable spectrum reconstruction improvement is achieved by IMP.The work of Wei Chen is supported by the State Key Laboratory of Rail Traffic Control and Safety (No. RCS2012ZT014), Beijing Jiaotong University, and the Key grant Project of Chinese Ministry of Education (No.313006).This is the author accepted manuscript. The final version is available from IEEE via http://dx.doi.org/10.1109/GLOCOM.2013.683122

    Exploiting the convex-concave penalty for tracking: A novel dynamic reweighted sparse Bayesian learning algorithm

    Get PDF
    We propose a novel dynamic reweighted â„“2 (DRâ„“2) algorithm in the regime of dynamic compressive sensing. Our analysis shows that aiming to solve a Type II optimization problem, DRâ„“2 is effectively minimizing a `convex-concave' penalty in the coefficients that transitions from a convex region to a concave function using knowledge of past estimations. DRâ„“2 thus provides superior reconstruction performance compared with state-of-the-art dynamic CS algorithms.This is the author accepted manuscript. The final version is available from IEEE via http://dx.doi.org/10.1109/ICASSP.2014.685422

    On the energy self-sustainability of IoT via distributed compressed sensing

    Get PDF
    This paper advocates the use of the distributed compressed sensing (DCS) paradigm to deploy energy harvesting (EH) Internet of Thing (IoT) devices for energy self-sustainability. We consider networks with signal/energy models that capture the fact that both the collected signals and the harvested energy of different devices can exhibit correlation. We provide theoretical analysis on the performance of both the classical compressive sensing (CS) approach and the proposed distributed CS (DCS)-based approach to data acquisition for EH IoT. Moreover, we perform an in-depth comparison of the proposed DCS-based approach against the distributed source coding (DSC) system. These performance characterizations and comparisons embody the effect of various system phenomena and parameters including signal correlation, EH correlation, network size, and energy availability level. Our results unveil that, the proposed approach offers significant increase in data gathering capability with respect to the CS-based approach, and offers a substantial reduction of the mean-squared error distortion with respect to the DSC system
    • …
    corecore